3D Face Geometry Recovery Via Group-wise Optical Flow

Fang, Hui, Costen, Nick, Cristinacce, David and Darby, John (2008) 3D Face Geometry Recovery Via Group-wise Optical Flow. IEEE International Conference on Facial and gesture recognition, 2008, Amsterdam, pp. 1-8, ISBN 978-1-4244-2154-1/08/, DOI https://doi.org/10.1109/AFGR.2008.4813303.

Item not available from this archive.


We describe an algorithm for automatically finding correspondences from face video sequences. This method is useful to many applications such as face tracking, face modeling and 3D face recovery. Given a sequence of images, the face feature points are tracked by a model-constraint optical flow algorithm. By employing a Minimum Description Length (MDL) point-refinement framework, the drift-off error caused by the optical flow algorithm can be reduced and the correspondences can be matched robustly by optimizing the statistical model. As a result, the face is able to be tracked precisely. Furthermore, it offers a new method of building an appearance model automatically. The objective root mean square error (RMSE) is used to prove the efficiency of the algorithm. At the same time, the performance is evaluated subjectively by generating 3D face models based upon it.

Item Type: Conference or Workshop Item (Poster)
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: Computing and Information Systems
Date Deposited: 28 Jan 2016 14:34
URI: http://repository.edgehill.ac.uk/id/eprint/6881

Archive staff only

Item control page Item control page