New STEM knowledge; emerging through collaboration

Dawne Bell and David Wooff
Before we begin, a little bit about who we are and where we come from ...
• University of the Year
• One of the fastest growing universities in the UK
• 128-year history, reputation of excellence for training Teachers and Health professionals
• Award-winning 160-acre campus

...and very well known for our ducks
Focussed within the context of STEM education, and the conference theme, this study seeks to explore how participants collaborate to build a diverse STEM-literate society.

The research questions how do participants:

• perceive D&T’s contribution to STEM education?
• acquire new (STEM) knowledge, and embed it into their own practice?
• personal understandings of STEM pedagogy help empower, and support the positioning of D&T’s place as a valued subject within the curriculum?
Research method: Constructivist grounded theory (Charmaz 2006), underpinned an interpretivist ontology.

This approach was adopted because it takes account of the reflexive and biographical stance of the researcher (Finlay and Gough 2003, Alvesson and Skoldberg 2009), and in this study participants were encouraged to relate the positioning of design and technology within the field of STEM education.
Participants:
The research engaged eleven practising design and technology teachers and sought to explore their attitudes to investigate how knowledge and understanding of STEM is developed, and how new knowledge is gained and evolves through collaboration.

Participants were selected for their ability to provide rich and varied accounts of their experiences (Geertz 1973).

Data was gathered via a focus group and semi-structured interviews.
Procedures advocated by Glaser (1978) were adopted, which involved a three stage coding process and the use of theoretical memos in order to analyse the data.

Utilising procedures advocated by Finch (1987), built up from elements of the data, three vignettes were created and represent aspects of the research findings as a whole.
Following preliminary analysis emergent theory suggests that participants acquire STEM related skills, knowledge and understanding in three ways;

1. Formally
2. Informally
3. Independently
Formally:

Where learning occurs at work in this way it is reflective of ‘cultivating communities of practice’ (Wenger et al. 2002). This is a shift from the original Communities of Practice (Lave and Wenger 1991) work which emerged as an apprenticeship, model of learning that is ‘usually unintentional rather than deliberate’.
Formally:

Limited access to formal training due to Science and Mathematics funding foci. Perceived as divisive, due to didactic dissemination by those in control.

Participants reported limited access to formal training due to costs. Perceived [by the majority] as divisive. Authoritarian and didactic dissemination.
Informally:

Informally:

Tacit knowledge leads to ‘theories-in-use’ (Argyris and Schon, 1974). Theory evolves from participants day-to-day experience. Situated cognition (Brown, Collins and Dugid 1989), knowledge is constructed socially within the context and culture it was learnt.

This approach presents teachers as agents of change, able to shape the subjects direction whilst working within the curricula structure.
Independently:

Beyond the boundaries of a physical workplace. The notion of ‘common ground’ (Clark and Brennan 1991). Membership is achieved through ‘active’ participation. Participants share ideas and knowledge. Mutual trust evolves, individuals become an effective, cohesive group.
Independently:

The use of educational technology; the internet, MOOCs (Dolan et al. 2013, Moore 2013), e-learning. Findings suggest that this is an effective way to acquire new STEM knowledge. Information shared is unconfined, and subsequently learning is limitless (Dalkir 2005, Duguid 2005).

Participants develop practice independently, through virtual networks and professional online learning communities.
In the UK STEM funding focuses upon science and mathematics (Morgan 2014, ESRC 2014).

This expedites the silo nature of STEM delivery. STEM is exciting, but pupils are being ‘switched off’ - something isn’t working. STEM disciplines as building blocks, learners, become adept in thinking across subject boundaries (Saunders 2006), become STEM literate.
Conclusion

For this to happen, policy makers must support teachers in their professional development to improve interdisciplinary pedagogical approaches to create new STEM knowledge.

Findings suggest that learning informally and independently, through self-organised physical or virtual networks empowers teachers and supports the generation of new STEM knowledge.
References


