Systematic infrared image quality improvement using deep learning based techniques

Zhang, Huaizhong, Casaseca-de-la-Higueraa, Pablo, Luob, Chunbo, Wanga, Qi, Kitchinic, Matthew, Parmleyc, Andrew and Monge-Alvareza, Jesus (2016) Systematic infrared image quality improvement using deep learning based techniques. Remote Sensing Technologies and Applications, 26/10/2016, Edingburgh, 10008, pp. 1-8, ISSN 0277-786X, DOI

hzhang-spie2016.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (360kB) | Preview


Infrared thermography (IRT, or thermal video) uses thermographic cameras to detect and record radiation in the longwavelength infrared range of the electromagnetic spectrum. It allows sensing environments beyond the visual perception limitations, and thus has been widely used in many civilian and military applications. Even though current thermal cameras are able to provide high resolution and bitdepth images, there are significant challenges to be addressed in specific applications such as poor contrast, low target signature resolution, etc. This paper addresses quality improvement in IRT images for object recognition. A systematic approach based on image bias correction and deep learning is proposed to increase target signature resolution and optimise the baseline quality of inputs for object recognition. Our main objective is to maximise the useful information on the object to be detected even when the number of pixels on target is adversely small. The experimental results show that our approach can significantly improve target resolution and thus helps making object recognition more efficient in automatic target detection/recognition systems (ATD/R).

Item Type: Conference or Workshop Item (Proceedings)
Additional Information: Proc. SPIE 10008, Remote Sensing Technologies and Applications in Urban Environments, 100080P
Subjects: T Technology > T Technology (General)
Divisions: Computing and Information Systems
Date Deposited: 24 Feb 2017 15:43

Archive staff only

Item control page Item control page