A semi-supervised approach using label propagation to support citation screening

Kontonatsios, Georgios, Brockmeier, Austin J, Przybta, Piotr, MvNaught, John, Tingting, Mu, Goulermass, John Y and Ananaidou, Sophia (2017) A semi-supervised approach using label propagation to support citation screening. Journal of Biomedical Informatics, 72. pp. 67-76. ISSN 1532-0464 DOI https://doi.org/10.1016/j.jbi.2017.06.018

semi_supervised_jbi_2017.pdf - Accepted Version
Available under License Creative Commons Attribution.

Download (632kB) | Preview


Citation screening, an integral process within systematic reviews that identifies citations relevant to the underlying research question, is a time-consuming and resource-intensive task. During the screening task, analysts manually assign a label to each citation, to designate whether a citation is eligible for inclusion in the review. Recently, several studies have explored the use of active learning in text classification to reduce the human workload involved in the screening task. However, existing approaches require a significant amount of manually labelled citations for the text classification to achieve a robust performance. In this paper, we propose a semi-supervised method that identifies relevant citations as early as possible in the screening process by exploiting the pairwise similarities between labelled and unlabelled citations to improve the classification performance without additional manual labelling effort. Our approach is based on the hypothesis that similar citations share the same label (e.g., if one citation should be included, then other similar citations should be included also). To calculate the similarity between labelled and unlabelled citations we investigate two different feature spaces, namely a bag-of-words and a spectral embedding based on the bag-of-words. The semi-supervised method propagates the classification codes of manually labelled citations to neighbouring unlabelled citations in the feature space. The automatically labelled citations are combined with the manually labelled citations to form an augmented training set. For evaluation purposes, we apply our method to reviews from clinical and public health. The results show that our semi-supervised method with label propagation achieves statistically significant improvements over two state-of-the-art active learning approaches across both clinical and public health reviews.

Item Type: Article
Uncontrolled Keywords: active learning, label propagation, citation screening, semi-supervised learning, text classification
Subjects: H Social Sciences > H Social Sciences (General)
Divisions: Computing and Information Systems
Date Deposited: 07 Jul 2017 14:19
URI: http://repository.edgehill.ac.uk/id/eprint/9211

Archive staff only

Item control page Item control page